Int. J. Solids Structures Vol. 35, No. 25, pp. 3405-3411, 1998
@ Pergamon © 1998 Elsevier Science Ltd

All rights reserved. Printed in Great Britain
0020--7683/98 $19.00 .
PII: S0020-7683(98)00025-0 BSI00 + 00

ON THE ABSENCE OF ESHELBY PROPERTY FOR
NON-ELLIPSOIDAL INCLUSIONS

V. A. LUBARDA* and X. MARKENSCOFF
Institute for Mechanics and Materials, Department of Applied Mechanics and Engineering
Science, University of California San Diego, La Jolla, CA 92093-0404, U.S.A.

(Received 26 October 1997 ; in revised form 5 January 1998)

Abstract—It is shown that the Eshelby property does not hold for any inclusion bounded by a
polynomial surface of higher than the second-degree, or any inclusion bounded by a non-convex
surface. Inclusions bounded by segments of two or more different surfaces are also precluded. The
absence of the Eshelby property for non-ellipsoidal inclusions is then discussed. © 1998 Elsevier
Science Ltd. All rights reserved.

1. INTRODUCTION

Eshelby (1957, 1961) has shown that the strain field within a homogeneous ellipsoidal
inclusion in an infinite elastic matrix is uniform, if the eigenstrain in the inclusion is
uniform. He also stated that among finite inclusions the ellipsoidal alone has this convenient
(Eshelby) property. Attempts were made to find other shapes of inclusions with this
property (Mura et al., 1994), and Rodin (1996) showed by an elaborate calculation that
polyhedral inclusions cannot have such a property. Markenscoff (1997a) provided an
alternative proof for this, and showed that the external field is fully determined by any
small analytic part of the boundary, since there, the constancy of stress in the interior
domain renders the exterior problem overdetermined. She also showed (Markenscoff,
1997b) that the only perturbations of the ellipsoid that maintain the Eshelby property are
those into another ellipsoid. In this paper we show that the Eshelby property does not hold
for any inclusion bounded by a polynomial surface of higher than the second-degree, or
any inclusion bounded by segments of two or more different surfaces. Simple examples for
the latter are inclusions bounded by a plane and an ellipsoidal surface, or any polyhedral
inclusion. The proof that an inclusion bounded by a non-convex surface cannot have the
Eshelby property is also given. The absence of the Eshelby property for non-ellipsoidal
inclusions is then discussed.

2. ESHELBY PROPERTY

If an inclusion removed from an infinite elastic matrix undergoes a stress free uniform
eigenstrain &}, the surface traction required to bring it back to its original size and shape,
when outside the matrix, is —an;. The outer normal to the boundary of the inclusion has
the components #, and g} = C,,e%. The elastic constants of a homogeneous material are
Cyu. Upon insertion back into the matrix, the stress in the inclusion is partially relaxed,
which is accompanied by an associated build-up of stress in the surrounding matrix. The
inclusion will have the Eshelby property of constant state of stress and strain if its bounding
surface S is such that the following holds:

A layer of body forces o}n; d.S, where o} is a uniform stress state, distributed over the
surface S in an infinite medium, produces a linear displacement distribution of the points
of S, given by u(x) = a,x;+b.

By the uniqueness theorem of elasticity, the displacement distribution in the material
inside the surface S is also linear, so that the strain and rotation within S are both uniform
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and given by symmetric and antisymmetric parts of a;, respectively. The Eshelby property
is an immediate consequence.

3. DISPLACEMENT EXPRESSION

The displacement at an arbitrary point x on the surface S due to a layer of body forces
on;dS distributed over S is obtained by integration from the Green’s function as

L S e
ui(x) - 167'[}1(1 —"V) J\S r [(3 4v)5ij+lilj]nk dSs (1)

where r = [X—x], and /; = (X;—x;)/r (Fig. 1). The Kronecker delta is denoted by J,,, and p
and v are the shear modulus and Poisson’s ratio of the isotropic elastic material. When S
is a closed convex surface, eqn (1) can be conveniently rewritten as (Eshelby, 1957)

. S
u,(x) = Toma(l —) Lﬁf,,-kr dQ. 2)
The angle Q is a solid angle, and
f;}k =(1"2V)(5‘kl)+5l}lk)_61kll+3l,l]lk (3)

The integration in eqn (2) extends over only half of the total solid angle of 4n, since the
entire convex surface S can be seen from any point x on S within a solid angle of 2n. For
a non-convex surface, the angle through which it can be seen from a point on S can be
different from 2%, and can depend on x. This is discussed in more detail later in the paper.
If rf;x in eqn (2) is an even function of /, the integral over the solid angle of 2z can be

Fig. 1. An internal surface S within an infinite medium caring a layer of distributed body forces
o*+ndS. Displacement at an arbitrary point x on § is u. The distance between the points x and X
is r, and its direction 1.
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calculated as one half of the integral over the solid angle of 4n. Thus, for given /, the
displacements w; in eqn (2) will be linear function of x; if  is linear in x,.

4. THE SHAPE OF AN INCLUSION

If a bounding surface of the inclusion is an m-degree surface F(x) = 0, then for any
other point X = x+rlon S,

oF 1 *F 1 o"F
Fi 1) = r S ——— F
x+rl) = F(x)+ rl+2/a 0%, L4 +m’6x P axMr’”l,l,...lm. C)]
Since F(x) = F(X) = 0, eqn (4) gives
aF 1 0*F 1 o"F _1
o 2,5 ox, rll+ -+ /max,.ax,...axm”" ..., =0. 5)

Closed surfaces correspond to even m, i.c., even degree of the highest power in the poly-
nomial representation of F. Clearly, for given /, r is a linear function of x; if Sis a quadratic
surface

F(x) = Ax;x;+Bx,—C =0, (6)
for then
_ (2Aijxj + Bl')li
r= Aplaly . N

It is assumed that the Hessian matrix 4, is positive definite, so that eqn (6) corresponds to
an ellipsoidal surface. Thus, r in eqn (7) is positive, since the unit vector with components
/;is directed from x inwards the convex surface S, while 24,x;+ B, = 0F/dx; is normal to S
and directed outside of it. Substitution of eqn (7) into eqn (2), therefore, gives

u;(x) = a;x;+b;. ®
The constants
ok Apl,
%= (1= v) Lnf”" Aplidy ®)
ok B,
bi = 16mu(l —v) Lnﬁ“‘ Auplly a2 (10)

depend only on the eigenstrain, Poisson’s ratio, and the shape of the ellipsoid. The symmetric
part of g is the uniform strain within S, the antisymmetric part is the uniform rotation,
and b, is a possible rigid-body translation. The above integrals can be evaluated explicitly,
and the strain within S can be expressed as &} = %,,¢}, where ¥, are the components of
the (uniform) Eshelby tensor. This provides an alternative proof to Eshelby’s result for
ellipsoidal inclusion (Eshelby 1957, 1961). It should be mentioned that for a point x on the
surface of the ellipsoid, the distance to any other point on the ellipsoid is r = —2fjg, where,
in Eshelby’s (1957) notation, f = A,/x;, g = Al [and B, =0 in our eqn (7)]. Therefore,
while Eshelby’s eqn (3.2) applies to x inside the ellipsoid, it does not apply to x on the
ellipsoidal surface, since for ¢ = 0 it gives » = 0. Since the required integration of rf}, for x
on the surface of the ellipsoid spans only half of the total solid angle, the same values for
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the Eshelby tensor components are obtained from our eqn (9) as from Eshelby’s eqn (3.4),
derived for an interior x and in which the integration spans the total solid angle of 4x.

There is no third-degree surface that is closed by itself, but a part of the bounding
surface of a finite inclusion can be a third-degree surface. It is thus, instructive to consider
the cubic representation of F, because it is the simplest one to demonstrate that the Eshelby
property cannot hold for an inclusion bounded by a polynomial surface of higher than the
second-degree. Thus, for m = 3,

F(X) = A,jkx,-xjxk+Bi/-x,-xj+c,-x,-—D = 0, (] 1)

and from eqn (5)

B b iz c 1/2 12
Gk B

where :
a= Ayl (13)
b =0CA,x+ Byl (14)
¢ =(B3Aux;x,+2B;x;+ C)HL.. (15)

For a convex portion of the surface F = 0, ¢ is negative, and for the positive definite tensors
A and B, both g and b are positive. Thus, the distance r in eqn (12) is also positive.
However, while the first term (—b/24) is linear in x;, the square-root term is a nonlinear
function of the coordinates x;. This implies that the contribution to displacements at the
point x on F = 0, due to tractions applied over F = 0, cannot be linear in x,. Consequently,
the Eshelby property cannot hold for an inclusion bounded in part by a third-degree
surface. Furthermore, the angle through which this surface is seen from a point x depends
on x, which also makes the displacements nonlinear functions of the coordinates x; It
should be pointed out that the square-root term in the expression (12) for r is an even
function of /, while £, in eqn (3) are odd functions of /, but the integral of their contribution
to the product of rfj; does not vanish, because the required integration does not extend
over the total solid angle of 4.

In the case of the fourth or higher-degree surface, r is also a nonlinear function of the
coordinates x,, and the Eshelby property does not hold for inclusions bounded by such
surfaces, either. The non-convex surfaces are additionally precluded by reasons given in
the next section.

5. OTHER SHAPES OF INCLUSIONS

The Eshelby property does not hold for an inclusion with a bounding surface that
consists of the segments of two or more different surfaces. For example, consider an
inclusion shown in Fig. 2 obtained by bisecting an ellipsoidal inclusion with a planar cut.
For a point x on the ellipsoidal portion of the bounding surface (F; = 0), the displacement
is

*

ajk
(X) = ——5 aty dQ 2 dQ ars A2 ), 16
ul(x) 167[#(1 __v) (Ll(x)ﬁjkrl +J;!2(x)f;]kr2 +L3(x)ﬁ]kr3 ) ( )

where the solid angles Q,, Q, and Q, depend on the location of the point x. Since each of
the r distances (r,, r,, r3), from the point x on the surface F, = 0 to another point on that
surface, or to the point on the plane F, = 0, is a linear function of x, eqn (16) gives upon
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F=0

Fig. 2. An inclusion obtained from an ellipsoidal inclusion (¥, = 0) by a planar cut (F, = 0). From

a point x on the ellipsoidal part of the inclusion, the planar part is seen through an angle Q,, while

the ellipsoidal parts are seen through the angles Q, and Q. Evidently, Q, = Q,(x), and likewise €,
and €.

integration a nonlinear displacement distribution. When x is on the planar part of S, the
distance r to the point on the ellipsoidal part of S is itself a nonlinear function of the
coordinates x,, and from eqn (2) it follows that the corresponding displacement is also a
nonlinear function of the coordinates x;. Therefore, the Eshelby property does not hold for
the considered inclusion. This was expected on physical grounds, because the resistance of
the surrounding matrix near the encounter of two surfaces is quite different than away from
them, and the planar boundary would take a curved shape upon insertion of the inclusion,
which in turn implies a nonuniform final state of strain within the inclusion. Similarly, the
Eshelby property does not hold for an inclusion made by two halves of two different
ellipsoids, which share the two equal semi-axes but have the third semi-axis different. Also,
obviously, precluded are finite inclusions that are parts of elliptic cylinders, hyperboloids
or paraboloids.

By extension of the analysis, it is straightforward to show that none of the polyhedral
inclusions have the Eshelby property. Although the distance r from a point x on one side
of a polyhedron to a point X on any other side of a polyhedron is a linear function of x,
the solid angle through which each side of the polyhedron is seen from the point x depends
on x (Fig. 3), and thus the displacements must be nonlinear functions of x. Therefore, for
a uniform eigenstrain, the final state of strain within a polyhedral inclusion cannot be
uniform. Indeed, a nonuniform strain in a cuboidal inclusion, associated with a uniform

a x d

Fig. 3. The angle through which the side ab is seen from a point x on the side ad of a polyhedron
abed depends on x, Q,, = Q,(x). Likewise, Q,. = Q,.(x) and Q., = Q Ax).
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Fig. 4. The solid angles Q, and Q; define the parts of a non-convex bounding surface § for which

the distance r from x is single-valued. Within the solid angle Q,, r is not single-valued and an

adequate integration is needed to encompass the corresponding parts of the boundary S. Clearly,
Q, = O,(x), and likewise , and Q,.

eigenstrain, was calculated by Faivre (1964). The reference to other related work can be
found in Mura (1987).

By similar reasons, all inclusions with non-convex boundaries are precluded from
having the Eshelby property. This is illustrated in Fig. 4. The solid angles Q, and Q; define
the portions of S for which the distance r from x to S is single-valued. Since all three angles
(Q,, Q, and Q,) depend on x, upon an appropriate integration it follows that displacement
components are nonlinear functions of the coordinates x,. Also, from some points of S the
non-convex surface is seen within the solid angle of 2x, but from other points it is seen
within a solid angle greater than 2n.

6. DISCUSSION

Among all considered shapes of inclusions, only the ellipsoidal inclusion has the
Eshelby property of constant strain, as conjectured by Eshelby (1961). Referring to the
auxiliary problem in Fig. 1, if the strain within S is uniform and equal to &, the associated
part of the traction on S is C,epn,. The rest of the applied traction, (o} — Ciei)n;, is
transmitted to the surrounding matrix and strains the material outside of S. This part of
the traction is, therefore, also deduced from a uniform state of stress, i.e., from the stress
6, = o}— Cyuels. Only an ellipsoid and an ellipsoidal cavity in an infinite medium, loaded
by tractions that can be deduced from uniform states of stress, both deform into ellipsoidal
shapes, and this leads to the Eshelby property for the ellipsoidal inclusion. Of course, the
stress state at the points just outside the inclusion is nonuniform, but it is only a uniform
part of it (&,) that contributes in the Cauchy relation to the traction transmitted to S and
to the surrounding matrix. The stress &, is not the average stress over S for the points just
outside of S, which is actually equal to zero for a spherical inclusion. This can be deduced
by an appropriate integration from eqns (2.13) of Eshelby (1957), or from the Tanaka and
Mori (1972) observation that the average stress and strain in the region between the
ellipsoidal inclusion and any ellipsoidal surface, concentric and similar in shape to the
inclusion, are equal to zero. Therefore, the integral of the symmetric part of un; over any
such surface is constant and equal to 62 V, where V is the volume of the inclusion.
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